Orbit-Product Analysis of (Generalized) Gaussian Belief Propagation

Jason Johnson, Post-Doctoral Fellow, LANL Joint work with Michael Chertkov and Vladimir Chernyak

Physics of Algorithms Workshop Santa Fe, New Mexico September 3, 2009

Overview

Introduction

- graphical models + belief propagation
- specialization to Gaussian model

Analysis of Gaussian BP

- walk-sum analysis for means, variances, covariances¹
- orbit-product analysis/corrections for determinant²

Current Work on Generalized Belief Propagation (GBP) [Yedidia et al]

- uses larger "regions" to capture more walks/orbits of the graph (better approximation)
- However, it can also lead to over-counting of walks/orbits (bad approximation/unstable algorithm)!

²Johnson, Chernyak & Chertkov (ICML '09). ←□ → ←② → ←② → ←② → □ → ◆② → ○○

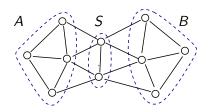
¹Earlier joint work with Malioutov & Willsky (NIPS, JMLR '06).

Graphical Models

A graphical model is a multivariate probability distribution that is expressed in terms of interactions among subsets of variables (e.g. pairwise interactions on the edges of a graph G).

$$P(x) = \frac{1}{Z} \prod_{i \in V} \psi_i(x_i) \prod_{\{i,j\} \in G} \psi_{ij}(x_i, x_j)$$

Markov property:



$$P(x_A, x_B|x_S) = P(x_A|x_S)P(x_B|x_S)$$

Given the potential functions ψ , the goal of *inference* is to compute marginals $P(x_i) = \sum_{x_{V \setminus i}} P(x)$ or the normalization constant Z, which is generally difficult in large, complex graphical models.

Gaussian Graphical Model

Information form of Gaussian density.

$$P(x) \propto \exp\left\{-\frac{1}{2}x^TJx + h^Tx\right\}$$

Gaussian graphical model: sparse J matrix

$$J_{ij} \neq 0$$
 if and only if $\{i,j\} \in G$

Potentials:

$$\psi_i(x_i) = e^{-\frac{1}{2}J_{ii}x_i^2 + h_ix_i}$$

$$\psi_{ij}(x_i, x_j) = e^{-J_{ij}x_ix_j}$$

Inference corresponds to calculation of mean vector $\mu = J^{-1}h$, covariance matrix $K = J^{-1}$ or determinant $Z = \det J^{-1}$. Marginals $P(x_i)$ specified by means μ_i and variances K_{ii} .

Belief Propagation

Belief Propagation iteratively updates a set of messages $\mu_{i\to j}(x_j)$ defined on directed edges of the graph G using the rule:

$$\mu_{i \to j}(x_j) \propto \sum_{x_i} \psi_i(x_i) \prod_{k \in N(i) \setminus j} \mu_{k \to i}(x_i) \psi(x_i, x_j)$$

Iterate message updates until converges to a fixed point.

Marginal Estimates: combine messages at a node

$$P(x_i) = \frac{1}{Z_i} \underbrace{\psi_i(x_i) \prod_{k \in N(i)} \mu_{k \to i}(x_i)}_{\tilde{\psi}_i(x_i)}$$

Belief Propagation II

Pairwise Estimates (on edges of graph):

$$P(x_i, x_j) = \frac{1}{Z_{ij}} \tilde{\psi}_i(x_i) \tilde{\psi}_j(x_j) \underbrace{\frac{\psi(x_i, x_j)}{\mu_{i \to j}(x_j) \mu_{j \to i}(x_i)}}_{\tilde{\psi}_{ij}(x_i, x_j)}$$

Estimate of Normalization Constant:

$$Z^{\mathrm{bp}} = \prod_{i \in V} Z_i \prod_{\{i,j\} \in G} \frac{Z_{ij}}{Z_i Z_j}$$

BP fixed point is *saddle point* of RHS with respect to messages/reparameterizations.

In trees, BP converges in finite number of steps and is exact (equivalent to variable elimination).

Gaussian Belief Propagation (GaBP)

Messages $\mu_{i\to j}(x_j) \propto \exp\{\frac{1}{2}\alpha_{i\to j}x_j^2 + \beta_{i\to j}x_j\}.$

BP fixed-point equations reduce to:

$$\begin{array}{rcl} \alpha_{i \to j} & = & J_{ij}^2 (J_{ii} - \alpha_{i \setminus j})^{-1} \\ \beta_{i \to j} & = & -J_{ij} (J_{ii} - \alpha_{i \setminus j})^{-1} (h_i + \beta_{i \setminus j}) \end{array}$$

where $\alpha_{i \setminus j} = \sum_{k \in N(i) \setminus j} \alpha_{k \to i}$ and $\beta_{i \setminus j} = \sum_{k \in N(i) \setminus j} \alpha_{k \to i}$.

Marginals specified by:

$$K_i^{\text{bp}} = (J_{ii} - \sum_{k \in N(i)} \alpha_{k \to i})^{-1}$$
$$\mu_i^{\text{bp}} = K_i^{\text{bp}} (h_i + \sum_{k \in N(i)} \beta_{k \to i})$$

Gaussian BP Determinant Estimate

Estimates of pairwise covariance on edges:

$$K_{(ij)}^{\text{bp}} = \begin{pmatrix} J_{ii} - \alpha_{i \setminus j} & J_{ij} \\ J_{ij} & J_{jj} - \alpha_{j \setminus i} \end{pmatrix}^{-1}$$

Estimate of $Z \triangleq \det K = \det J^{-1}$:

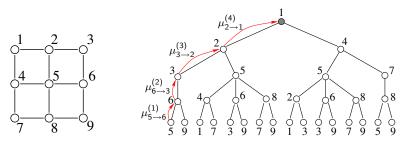
$$Z^{\mathrm{bp}} = \prod_{i \in V} Z_i \prod_{\{i,j\} \in G} \frac{Z_{ij}}{Z_i Z_j}$$

where $Z_i = K_i^{\text{bp}}$ and $Z_{ij} = \det K_{(ij)}^{\text{bp}}$.

Exact in tree models (equivalent to Gaussian elimination), approximate in loopy models.

The BP Computation Tree

BP marginal estimates are equivalent to the exact marginal in a tree-structured model [Weiss & Freeman].



The BP messages correspond to upwards variable elimination steps in this computation tree.

Walk-Summable Gaussian Models

Let J = I - R. If $\rho(R) < 1$ then $(I - R)^{-1} = \sum_{L=0}^{\infty} R^L$.

Walk-Sum interpretation of inference:

$$K_{ij} = \sum_{L=0}^{\infty} \sum_{w:i \to j} R^w \stackrel{?}{=} \sum_{w:i \to j} R^w$$

$$\mu_i = \sum_j h_j \sum_{L=0}^{\infty} \sum_{w: j \to i} R^w \stackrel{?}{=} \sum_{w: * \to i} h_* R^w$$

Walk-Summable if $\sum_{w:i \to j} |R^w|$ converges for all i,j. Absolute convergence implies convergence of walk-sums (to same value) for arbitrary orderings and partitions of the set of walks. Equivalent to $\rho(|R|) < 1$.

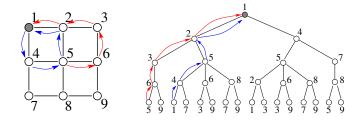
Walk-Sum Interpretation of GaBP

Combine interpretation of BP as exact inference on computation tree with walk-sum interpretation of Gaussian inference in trees:

- messages represent walk-sums in subtrees of computation tree
- ► Gauss BP converges in walk-summable models
- complete walk-sum for the means
- incomplete walk-sum for the variances

Complete Walk-Sum for Means

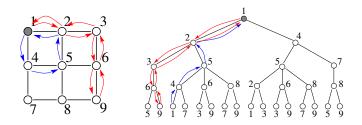
Every walk in G ending at a node i maps to a walk of the computation tree T_i (ending at root node of T_i)...



Gaussian BP converges to the correct means in WS models.

Incomplete Walk-Sum for Variances

Only those *totally backtracking* walks of \mathcal{G} can be embedded *as closed walks* in the computation tree...



Gaussian BP converges to incorrect variance estimates (underestimate in non-negative model).

Zeta Function and Orbit-Product

What about the determinant?

Definition of Orbits:

- ▶ A walk is *closed* if it begins and ends at same vertex.
- ▶ It is *primitive* if does not repeat a shorter walk.
- Two primitive walks are equivalent if one is a cyclic shift of the other.
- ▶ Define *orbits* $\ell \in \mathcal{L}$ of G to be equivalence classes of closed, primitive walks.

Theorem. Let $Z \triangleq \det(I - R)^{-1}$. If $\rho(|R|) < 1$ then

$$Z = \prod_{\ell} (1 - R^{\ell})^{-1} \triangleq \prod_{\ell} Z_{\ell}.$$

A kind of zeta function in graph theory.

Z_{bp} as Totally-Backtracking Orbit-Product

Definition of Totally-Backtracking Orbits:

- ▶ Orbit is *reducible* if it contains backtracking steps ...(ij)(ji)..., else it is *irreducible* (or *backtrackless*).
- ▶ Every orbit ℓ has a unique irreducible core $\gamma = \Gamma(\ell)$ obtained by iteratively deleting pairs of backtracking steps until no more remain. Let \mathcal{L}_{γ} denote the set of all orbits that reduce to γ .
- ▶ Orbit is totally backtracking (or trivial) if it reduces to the empty orbit $\Gamma(\ell) = \emptyset$, else it is non-trivial.

Theorem. If $\rho(|R|) < 1$ then Z^{bp} (defined earlier) is equal to the totally-backtracking orbit-product:

$$Z^{ ext{bp}} = \prod_{\ell \in \mathcal{L}_\emptyset} Z_\ell$$

Orbit-Product Correction and Error Bound

Orbit-product correction to Z^{bp} :

$$Z=Z^{\operatorname{bp}}\prod_{\ell\not\in\mathcal{L}_\emptyset}Z_\ell$$

Error Bound: missing orbits must all involve cycles of the graph...

$$\left|\frac{1}{n}\left|\log\frac{Z}{Z^{\mathrm{bp}}}\right| \leq \frac{\rho^{\mathsf{g}}}{\mathsf{g}(1-\rho)}\right|$$

where $\rho \triangleq \rho(|R|) < 1$ and g is girth of the graph (length of shortest cycle).

Reduction to Backtrackless Orbit-Product Correction

We may reduce the orbit-product correction to one over just backtrackless orbits $\boldsymbol{\gamma}$

$$Z = Z_{
m bp} \prod_{\ell} Z_{\ell} = Z_{
m bp} \prod_{\gamma} \underbrace{\left(\prod_{\ell \in \mathcal{L}(\gamma)} Z_{\ell}
ight)}_{Z_{\gamma}'}$$

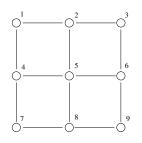
with modified orbit-factors Z_γ' based on GaBP

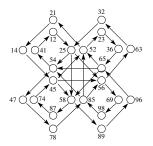
$$Z_{\gamma}' = (1 - \prod_{(ij) \in \gamma} r_{ij}')^{-1}$$
 where $r_{ij}' \triangleq (1 - \alpha_{i \setminus j})^{-1} r_{ij}$

The factor $(1 - \alpha_{i \setminus j})^{-1}$ serves to reconstruct totally-backtracking walks at each point i along the backtrackless orbit γ .

Backtrackless Determinant Correction

Define backtrackless graph G' of G as follows: nodes of G' correspond to directed edges of G, edges $(ij) \rightarrow (jk)$ for $k \neq i$.





Let R' be adjacency matrix of G' with modified edge-weights r' based on GaBP. Then,

$$Z=Z_{
m bp}\det(I-R')^{-1}$$

Region-Based Estimates/Corrections

Select a set of regions $\mathcal{R} \subset 2^V$ that is closed under intersections and cover all vertices and edges of \mathcal{G} .

Define regions counts $(n_A \in \mathbb{Z}, A \in \mathcal{R})$ by inclusion-exclusion rule:

$$n_A = 1 - \sum_{B \in \mathcal{R} | A \subsetneq B} n_B$$

To capture all orbits covered by any region (without over-counting) we calculate the estimate:

$$Z_{\mathcal{R}} \triangleq \prod_{B} Z_{B}^{n_{B}} \triangleq \prod_{B} (\det(I - R_{B})^{-1})^{n_{B}}$$

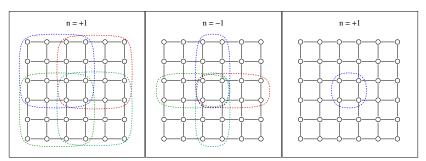
Error Bounds. Select regions to cover all orbits up to length L. Then,

$$\left| \frac{1}{n} \left| \log \frac{Z_{\mathcal{B}}}{Z} \right| \le \frac{\rho^L}{L(1-\rho)}$$

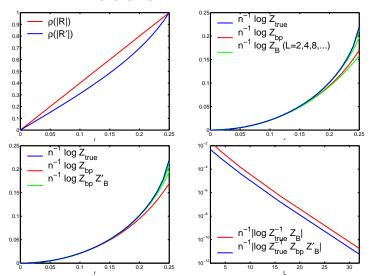
Example: 2-D Grids

Choice of regions for grids: overlapping $L \times L$, $\frac{L}{2} \times L$, $L \times \frac{L}{2}$, $\frac{L}{2} \times \frac{L}{2}$ (shifted by $\frac{L}{2}$).

For example, in 6×6 grid with block size L = 4:



 \times 256 Periodic Grid, uniform edge weights $r \in [0, .25]$. Test with L = 2, 4, 8, 16, 32.



Generalized Belief Propagation

Select a set of regions $\mathcal{R} \subset 2^{\mathcal{V}}$ that is closed under intersections and cover all vertices and edges of \mathcal{G} .

Define regions counts $(n_A \in \mathbb{Z}, A \in \mathcal{R})$ by inclusion-exclusion rule:

$$n_A = 1 - \sum_{B \in \mathcal{R} | A \subsetneq B} n_B$$

Then, GBP solves for saddle point of

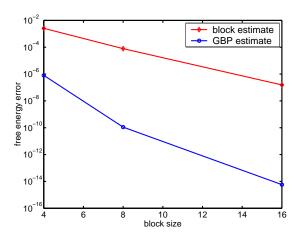
$$Z_{\mathcal{R}}(\psi) \triangleq \prod_{A \in \mathcal{P}} Z(\psi_R)^{n_R}$$

over reparameterizations $\{\psi_A, A \in \mathcal{R}\}$ of the form

$$P(x) = \frac{1}{Z} \prod_{A \in \mathcal{R}} \psi_R(x_R)^{n_R}$$

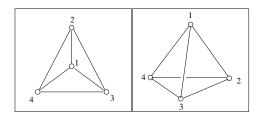
Denote saddle-point by $Z_{
m gbp}=Z_{\cal R}(\psi^{
m gbp})$.

Example: 2-D Grid Revisited

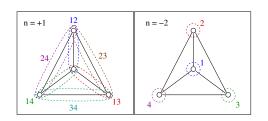


GBP Toy Example

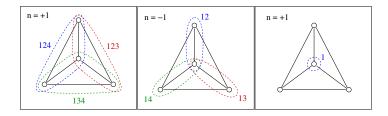
Look at graph $\mathcal{G}=\mathcal{K}_4$ and consider different choices of regions...



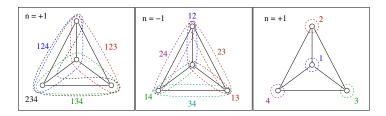
BP Regions:



GBP " 3Δ " Regions:



GBP "4\Delta" Regions:



Computational Experiment with equal edge weights r = .32 (the model becomes singular/indefinite for $r \ge \frac{1}{3}$).

$$Z = 10.9$$

 $Z_{\rm bp} = 2.5$
 $Z_{\rm gbp}(3\Delta) = 9.9$
 $Z_{\rm gbp}(4\Delta) = 54.4!!!$

GBP with 3Δ regions is big improvement of BP (GBP captures more orbits).

What went wrong with the 4Δ method?

Orbit-Product Interpretation of GBP

Answer: sometimes GBP can overcount orbits of the graph.

- ▶ Let $\mathcal{T}(\mathcal{R})$ be the set of hypertrees T one may construct from regions \mathcal{R} .
- ▶ Orbit ℓ spans T if we can embed ℓ in T but cannot embed it in any sub-hypertree of T.
- ▶ Let $g_{\ell} \triangleq \#\{T \in \mathcal{T}(\mathcal{R}) | \ell \text{ spans } T\}.$

Orbit-Product Interpretation of GBP:

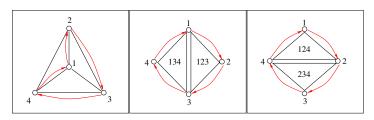
$$Z_{
m gbp} = \prod_\ell Z_\ell^{oldsymbol{g}_\ell}$$

Remark. GBP may also include multiples of an orbit as independent orbits (these are not counted by Z).

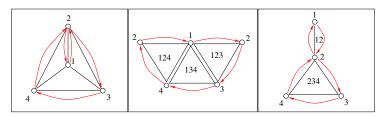
We say GBP is *consistent* if $g_{\ell} \leq 1$ for all (primitive) orbits and $g_{\ell} = 0$ for multiples of orbits (no overcounting).

Examples of Over-Counting

Orbit $\ell = [(12)(23)(34)(41)]$:



Orbit $\ell = [(12)(23)(34)(42)(21)]$:



Conclusion and Future Work

Graphical view of inference in walk-summable Gaussian graphical models that is very intuitive for understanding iterative inference algorithms and approximation methods.

Future Work:

- many open questions on GBP.
- multiscale method to approximate longer orbits from coarse-grained model.
- beyond walk-summable?